Set
Instruksi (bahasa Inggris: Instruction Set, atau Instruction Set Architecture (ISA))
didefinisikan sebagai suatu aspek dalam arsitektur komputer yang dapat dilihat
oleh para pemrogram. Secara umum, ISA ini mencakup jenis data yang didukung,
jenis instruksi yang dipakai, jenis register, mode pengalamatan, arsitektur
memori, penanganan interupsi, eksepsi, dan operasi I/O eksternalnya (jika ada).
ISA merupakan sebuah spesifikasi dari kumpulan semua kode-kode biner (opcode)
yang diimplementasikan dalam bentuk aslinya (native form) dalam sebuah desain
prosesor tertentu. Kumpulan opcode tersebut, umumnya disebut sebagai bahasa
mesin (machine language) untuk ISA yang bersangkutan. ISA yang populer
digunakan adalah set instruksi untuk chip Intel x86, IA-64, IBM PowerPC,
Motorola 68000, Sun SPARC, DEC Alpha, dan lain-lain.
KARAKTERISTIK DAN FUNGSI SET INSTRUKSI
Operasi
dari CPU ditentukan oleh instruksiinstruksi yang dilaksanakan atau
dijalankannya. Instruksi ini sering disebut sebagai instruksi mesin (mechine
instructions) atau instruksi komputer (computer instructions).
Kumpulan dari instruksi-instruksi yang berbeda yang dapat dijalankan oleh CPU disebut set Instruksi (Instruction Set).
JENIS INSTRUKSI
1. Data procecessing: Arithmetic dan Logic Instructions
2. Data storage: Memory instructions
3. Data Movement: I/O instructions
Kumpulan dari instruksi-instruksi yang berbeda yang dapat dijalankan oleh CPU disebut set Instruksi (Instruction Set).
JENIS INSTRUKSI
1. Data procecessing: Arithmetic dan Logic Instructions
2. Data storage: Memory instructions
3. Data Movement: I/O instructions
4.Control:
Test and branch instructions
Teknik Pengalamatan
Mode pengalamatn Pentium
Pentium
dilengkapi bermacam-macam mode pengalamatan untuk memudahkan bahasa-bahasa
tingkat tinggi mengeksekusinya secara efisien.
Macam-macam mode pengalamatanpentium
:
¨
Mode Immediate
·
Operand berada di dalam intruksi.
·
Operand dapat berupa data byte, word atau doubleword.
¨
Mode Operand Register
Yaitu operand adalah isi register.
·
Register 8 bit (AH, BH, CH, DH, AL, BL, CL, DL)
·
Register 16 bit (AX, BX, CX, DX, SI, DI, SP, BP)
·
Register 32bit (EAX, EBX, ECX, ESI, EDI, ESP, EBP)
·
Register 64 bit yang dibentuk dari register 32 bit secara berpasangan.
·
Register 8, 16, 32 bit merupakan register untuk penggunaan umum (general
purpose register).
·
Register 14 bit biasanyan untuk operasi floating point.
·
Register segmen (CS, DS, ES, SS, FS, GS)
¨ Mode Displacement
·
Alamat efektif berisi bagian-bagian intruksin dengan displacement 8, 16,
atu 32 bit.
·
Dengan segmentasi, seluruh alamat dalam intruksi mengacu ke sebuah offset
di dalam segmen.
·
Dalam Pentium, mode ini digunakan untuk mereferensi variable-variabel global.
¨ Mode Base
·
pengalamatan indirect yang menspesifikasi saru register 8, 16 atau 32 bit
berbasis alamat efektifnya.
Desain set Instruksi
Desain set instruksi merupakan masalah yang sangatkomplek yang melibatkan banyak aspek, diantaranya adalah:1. Kelengkapan set instruksi2. Ortogonalitas (sifat independensi instruksi)3. Kompatibilitas :
- source code compatibility
- Object code Compatibility
Selain ketiga aspek tersebut juga melibatkan hal-hal sebagaiberikut :
a. Operation Repertoire
Berapa banyak dan
operasiapa saja yang disediakan, dan berapa sulitoperasinya
b. Data Types
Tipe/jenis data
yang dapat olah
c. Instruction Format
Panjangnya, banyaknya
alamat,dsb.
d. Register
Banyaknya register
yang dapat digunakan
e. Addressing
Mode pengalamatan untuk operan
Mode pengalamatan untuk operan
1.
Instruction set architecture (ISA) / arsitektur set instruksi
ISA meliputi spesifikasi yang menentukan bagaimana programmer bahasa mesin akan berinteraksi oleh computer. ISA menentukan sifat komputasional computer.
ISA meliputi spesifikasi yang menentukan bagaimana programmer bahasa mesin akan berinteraksi oleh computer. ISA menentukan sifat komputasional computer.
2. Hardware
system architecture (HSA) / arsitektur system hardware
HAS berkaitan dengan subsistem hardware utama computer (CPU, system memori dan IO). HSA mencakup desain logis dan organisasi arus data dari subsistem.
HAS berkaitan dengan subsistem hardware utama computer (CPU, system memori dan IO). HSA mencakup desain logis dan organisasi arus data dari subsistem.
JENIS
INSTRUKSI
- Data processing/pengoahan data : instruksi aritmetika dan logika.
- Data storage/penyimpanan data : instruksi-instruksi memori.
- Data movement/perpindahan data : instruksi I/O.
- Control/control : instruksi pemeriksaan dan percabangan.
Instruksi aritmetika memiliki kemampuan untuk mengolah data numeric. Sedangkan instruksi logika beroperasi pada bit-bit word sebagai bit, bukan sebagai bilangan. Operasi-operasi tersebut dilakukan teutama untuk data di register CPU.
Instruksi-instruksi memori diperlukan untuk memindah data yang terdapat di memori dan register.
Instruksi-instruksi I/O diperlukan untuk memindahkan program dan data kedalam memori dan mengembalikan hasil komputasi kepada pengguna.
- Data processing/pengoahan data : instruksi aritmetika dan logika.
- Data storage/penyimpanan data : instruksi-instruksi memori.
- Data movement/perpindahan data : instruksi I/O.
- Control/control : instruksi pemeriksaan dan percabangan.
Instruksi aritmetika memiliki kemampuan untuk mengolah data numeric. Sedangkan instruksi logika beroperasi pada bit-bit word sebagai bit, bukan sebagai bilangan. Operasi-operasi tersebut dilakukan teutama untuk data di register CPU.
Instruksi-instruksi memori diperlukan untuk memindah data yang terdapat di memori dan register.
Instruksi-instruksi I/O diperlukan untuk memindahkan program dan data kedalam memori dan mengembalikan hasil komputasi kepada pengguna.
TEKNIK
PENGALAMATAN
Ada 3 teknik dasar untuk pengalamatan, yaitu:
1. Pemetaan langsung (direct mapping), terdiri dari dua cara yakni Pengalamatan Mutlak (absolute addressing) dan Pengalamatan relatif (relative addressing).
- Pengalamatan Mutlak
Untuk teknik pengalamatan ‘alamat mutlak’ ini, tidak terlalu mempermasalahkan kunci atribut karena diminta langsung menuliskan di mana alamat record yang akan di masukkan. Jika kita menggunakan hard disk atau magnetic drum, ada dua cara dalam menentukan alamat memorinya, yaitu (1) cylinder addressing dan (2) sector addressing. Jika kita menggunakan cylinder addressing, maka kita harus menetapkan nomor-nomor dari silinder (cylinder), permukaan (surface), dan record, sedangkan bila kita menggunakan sector addressing, maka kita harus menetapkan nomor-nomor dari sektor (sector), lintasan (track), dan permukaan (surface). Teknik ini mudah dalam pemetaan (pemberian) alamat memorinya. Sulitnya pada pengambilan (retrieve) data kembali, jika data yang kita masukkan banyak, kita bisa lupa di mana alamat record tertentu.
-pengalamatan relatif
Teknik ini menjadikan atribut kunci sebagai alamat memorinya, jadi, data dari NIM dijadikan bertipe numeric(integer) dan dijadikan alamat dari record yang bersangkutan. Cara ini memang sangat efektif untuk menemukan kembali record yang sudah disimpan, tetapi sangat boros penggunaan memorinya. Tentu alamat memori mulai dari 1 hingga alamat ke sekian juta tidak digunakan karena nilai dari NIM tidak ada yang kecil. Pelajari keuntungan dan kerugian lainnya.Teknik ini termasuk dalam katagori address space dependent.
2. Pencarian Tabel (directory look-up)
Teknik ini dilakukan dengan cara mengambil seluruh kunci atribut dan alamat memori yang ada dan dimasukkan ke dalam tabel tersendiri. Jadi tabel itu (misal disebut dengan tabel INDEX) hanya berisi kunci atribut (misalkan NIM) yang telah disorting (diurut) dan alamat memorinya. Jadi, sewaktu dilakukan pencarian data, tabel yang pertama dibaca adalah tabel INDEX itu, setelah ditemukan atribut kuncinya, maka data alamat yang ada di sana digunakan untuk meraih alamat record dari data (berkas/ file/ tabel) yang sebenarnya. Pencarian yang dilakukan di tabel INDEX akan lebih cepat dilakukan dengan teknik pencarian melalui binary search (dibagi dua-dua, ada di mata kuliah Struktur dan Organisasi Data 2 kelak) ketimbang dilakukan secara sequential. Nilai key field (kunci atribut) bersifat address space independent (tidak terpengaruh terhadap perubahan organisasi file-nya), yang berubah hanyalah alamat yang ada di INDEX-nya.
3. Kalkulasi (calculating).
Kalau pada teknik pencarian tabel kita harus menyediakan ruang memori untuk menyimpan tabel INDEX-nya, maka pada teknik ini tidak diperlukan hal itu. Yang dilakukan di sini adalah membuat hitungan sedemikian rupa sehingga dengan memasukkan kunci atribut record-nya, alamatnya sudah dapat diketahui. Tinggal masalahnya, bagaimana membuat hitungan dari kunci atribut itu sehingga hasilnya bisa efisien (dalam penggunaan memori) dan tidak berbenturan nilainya (menggunakan alamat yang sama).
Ada 3 teknik dasar untuk pengalamatan, yaitu:
1. Pemetaan langsung (direct mapping), terdiri dari dua cara yakni Pengalamatan Mutlak (absolute addressing) dan Pengalamatan relatif (relative addressing).
- Pengalamatan Mutlak
Untuk teknik pengalamatan ‘alamat mutlak’ ini, tidak terlalu mempermasalahkan kunci atribut karena diminta langsung menuliskan di mana alamat record yang akan di masukkan. Jika kita menggunakan hard disk atau magnetic drum, ada dua cara dalam menentukan alamat memorinya, yaitu (1) cylinder addressing dan (2) sector addressing. Jika kita menggunakan cylinder addressing, maka kita harus menetapkan nomor-nomor dari silinder (cylinder), permukaan (surface), dan record, sedangkan bila kita menggunakan sector addressing, maka kita harus menetapkan nomor-nomor dari sektor (sector), lintasan (track), dan permukaan (surface). Teknik ini mudah dalam pemetaan (pemberian) alamat memorinya. Sulitnya pada pengambilan (retrieve) data kembali, jika data yang kita masukkan banyak, kita bisa lupa di mana alamat record tertentu.
-pengalamatan relatif
Teknik ini menjadikan atribut kunci sebagai alamat memorinya, jadi, data dari NIM dijadikan bertipe numeric(integer) dan dijadikan alamat dari record yang bersangkutan. Cara ini memang sangat efektif untuk menemukan kembali record yang sudah disimpan, tetapi sangat boros penggunaan memorinya. Tentu alamat memori mulai dari 1 hingga alamat ke sekian juta tidak digunakan karena nilai dari NIM tidak ada yang kecil. Pelajari keuntungan dan kerugian lainnya.Teknik ini termasuk dalam katagori address space dependent.
2. Pencarian Tabel (directory look-up)
Teknik ini dilakukan dengan cara mengambil seluruh kunci atribut dan alamat memori yang ada dan dimasukkan ke dalam tabel tersendiri. Jadi tabel itu (misal disebut dengan tabel INDEX) hanya berisi kunci atribut (misalkan NIM) yang telah disorting (diurut) dan alamat memorinya. Jadi, sewaktu dilakukan pencarian data, tabel yang pertama dibaca adalah tabel INDEX itu, setelah ditemukan atribut kuncinya, maka data alamat yang ada di sana digunakan untuk meraih alamat record dari data (berkas/ file/ tabel) yang sebenarnya. Pencarian yang dilakukan di tabel INDEX akan lebih cepat dilakukan dengan teknik pencarian melalui binary search (dibagi dua-dua, ada di mata kuliah Struktur dan Organisasi Data 2 kelak) ketimbang dilakukan secara sequential. Nilai key field (kunci atribut) bersifat address space independent (tidak terpengaruh terhadap perubahan organisasi file-nya), yang berubah hanyalah alamat yang ada di INDEX-nya.
3. Kalkulasi (calculating).
Kalau pada teknik pencarian tabel kita harus menyediakan ruang memori untuk menyimpan tabel INDEX-nya, maka pada teknik ini tidak diperlukan hal itu. Yang dilakukan di sini adalah membuat hitungan sedemikian rupa sehingga dengan memasukkan kunci atribut record-nya, alamatnya sudah dapat diketahui. Tinggal masalahnya, bagaimana membuat hitungan dari kunci atribut itu sehingga hasilnya bisa efisien (dalam penggunaan memori) dan tidak berbenturan nilainya (menggunakan alamat yang sama).
DESAIN SET INSTRUKSI
Desain set instruksi merupakan masalah yang sangat komplek yang melibatkan banyak aspek, diantaranya adalah :
1. kelengkapan set instruksi
2. ortogonalitas (sifat indepedensi instruksi)
3. kompatibilitas :
- source code compatibility
- object code compatibility
Selain ketiga aspek tersebut juga melibatkan hal-hal sebagai berikut :
a. Operation Repertoire: Berapa banyak dan operasi apa saja yang disediakan, dan berapa sulit
operasinya
b. Data Types : tipe/jenis data yang dapat diolah.
c. Instruction Format : panjangnya, banyaknya alamat, dsb.
d. Register : Banyaknya register yang dapat digunakan .
e.Addressing : Mode pengalamatan untuk operand.
2. CPU
Central processing unit (CPU) adalah bagian dari sebuah komputer sistem yang melaksanakan instruksi dari program komputer , untuk melakukan aritmatika, logis, dan dasar input / output dari sistem operasi.
PENGERTIAN BUS
Pada motherboard terdapat saluran-saluran penghubung yang menghubungkan satu komponen dengan komponen lainnya. Saluran penghubung ini berupa garis-garis yang tercetak pada PCB motherboard. Melalui saluran-saluran inilah data, informasi, dan instruksi-instruksi yang diberikan pada komputer ditransfer/melintas dari komponen satu ke komponen lainnya. Data dan instruksi tersebut diangkut dalam wujud sinyal-sinyal elektronis yang mempunyai makna tertentu. Sekelompok saluran yang mempunyai fungsi yang sama disebut jalur atau bus. Saluran-saluran penghubung tadi disebut pula dengan istikah konduktor.
ORGANISASI
BUS
Organsiasi bus merupakan sekumpulan dari bagian-bagian bus dimana tersusun menjadi satu,yang memungkinkan suatu bus dapat bekerja dan dapat dilakukan. Adapun bagian tersebut yaitu seperti Pengertian jalur tidak sama dengan saluran. Dalam hal ini, jalur adalah kata jamak dari saluran. Pahamilah penjelasan berikut ini: Jalur data (data bus) yang terdiri dari beberapa (sejumlah) saluran data, jalur adres (address bus) terdiri dari beberapa (sejumlah) saluran adreess dan jalur kontrol (control bus) terdiri dari beberapa (sejumlah) saluran control.
STRUKTUR BUS
Sebuah bus biasanya terdiri atas beberapa saluran. Sebagai contoh bus data terdiri atas 8 saluran sehingga dalam satu waktu dapat mentransfer data 8 bit. Secara umum fungsi saluran bus dikatagorikan dalam tiga bagian, yaitu saluran data, saluran alamat dan saluran control. Saluran data(data bus) adalah lintasan bagi perpindahan data antar modul. Secara kolektif lintasan ini disebut bus data. Umumnya jumlah saluran terkait dengan panjang word, misalnya 8, 16, 32 saluran dengan tujuan agar mentransfer word dalam sekali waktu. Jumlah saluran dalam bus data dikatakan lebar bus, dengan satuan bit, misal lebar bus 16 bit.
Organsiasi bus merupakan sekumpulan dari bagian-bagian bus dimana tersusun menjadi satu,yang memungkinkan suatu bus dapat bekerja dan dapat dilakukan. Adapun bagian tersebut yaitu seperti Pengertian jalur tidak sama dengan saluran. Dalam hal ini, jalur adalah kata jamak dari saluran. Pahamilah penjelasan berikut ini: Jalur data (data bus) yang terdiri dari beberapa (sejumlah) saluran data, jalur adres (address bus) terdiri dari beberapa (sejumlah) saluran adreess dan jalur kontrol (control bus) terdiri dari beberapa (sejumlah) saluran control.
STRUKTUR BUS
Sebuah bus biasanya terdiri atas beberapa saluran. Sebagai contoh bus data terdiri atas 8 saluran sehingga dalam satu waktu dapat mentransfer data 8 bit. Secara umum fungsi saluran bus dikatagorikan dalam tiga bagian, yaitu saluran data, saluran alamat dan saluran control. Saluran data(data bus) adalah lintasan bagi perpindahan data antar modul. Secara kolektif lintasan ini disebut bus data. Umumnya jumlah saluran terkait dengan panjang word, misalnya 8, 16, 32 saluran dengan tujuan agar mentransfer word dalam sekali waktu. Jumlah saluran dalam bus data dikatakan lebar bus, dengan satuan bit, misal lebar bus 16 bit.
KONEKSI BUS
Bus merupakan lintasan komunikasi yang menghubungkan dua atau lebih komponen komputer. Sifat penting dan merupakan syarat utama bus adalah media transmisi yang dapat digunakan bersama oleh sejumlah perangkat yang terhubung apadanya.
Karena digunakan bersama, diperlukan aturan main agar tidak terjadi tabrakan data atau kerusakan data yang ditransmisikan. Walaupun digunakan bersama namun dalam satu waktu hanya ada sebuah perangkat yang dapat menggunakan bus.
TIPE BUS
Berdasar jenis busnya, bus dibedakan menjadi bus yang khusus menyalurkan data tertentu, misalnya paket data saja, atau alamat saja, jenis ini disebut dedicated bus. Namun apabila bus dilalukan informasi yang berbeda baik data, alamat maupun sinyal kontrol dengan metode mulipleks data maka bus ini disebut multiplexed bus.
Keuntungan mulitiplexed bus adalah hanya memerlukan saluran sedikit sehingga dapat menghemat tempat, namun kerugiannya adalah kecepatan transfer data menurun dan diperlukan mekanisme yang komplek untuk mengurai data yang telah dimulitipleks.
Saat ini yang umum, bus didedikasikan untuk tiga macam, yaitu bus data, bus alamat dan bus
kontrol.
ALU (Aritmetik Logic Unit)
adalah sebuah sirkuit digital yang melakukan aritmatika dan logika operasi. ALU adalah sebuah blok bangunan fundamental dari central processing unit komputer, dan bahkan yang paling sederhana mikroprosesor mengandung satu untuk tujuan seperti timer mempertahankan. Prosesor ditemukan di dalam CPU modern dan unit pengolahan grafis ( GPU ) mengakomodasi ALUS sangat kuat dan sangat kompleks, sebuah komponen tunggal mungkin berisi sejumlah alus.
- Fixed Point
adalah tipe data yang nyata untuk nomor yang telah tetap jumlah digit setelah (dan kadang-kadang juga sebelum) titik radix (setelah titik desimal dalam notasi desimal bahasa Inggris '.'). Representasi fixed-point nomor dapat dibandingkan dengan (dan lebih menuntut komputasi) lebih rumit floating point representasi nomor.
Fixed-point nomor berguna untuk mewakili nilai-nilai pecahan, biasanya dalam basis 2 atau basis 10, ketika menjalankan prosesor tidak memiliki unit floating point (FPU) atau jika fixed-point menyediakan peningkatan kinerja atau akurasi untuk aplikasi di tangan. Paling rendah-biaya tertanam mikroprosesor dan mikrokontroler tidak memiliki FPU.
- Floating Point
floating point menjelaskan metode mewakili bilangan real dalam cara yang dapat mendukung berbagai nilai. Nomor, pada umumnya, mewakili sekitar untuk tetap jumlah digit yang signifikan dan ditingkatkan menggunakan eksponen . Dasar untuk scaling biasanya 2, 10 atau 16. Jumlah yang khas yang dapat diwakili tepat adalah dalam bentuk:
Signifikan digit × basis eksponen
Floating point merujuk pada fakta bahwa titik radix (titik desimal, atau, lebih umum di komputer, titik biner) dapat "mengambang", yaitu, dapat ditempatkan di mana saja relatif terhadap angka signifikan dari nomor tersebut. Posisi ini ditunjukkan secara terpisah dalam representasi internal, dan floating-point sehingga representasi dapat dianggap sebagai realisasi komputer notasi ilmiah.
CU (Control Unit)
adalah salah satu bagian dari CPU yang bertugas untuk memberikan arahan/kendali/ kontrol terhadap operasi yang dilakukan di bagian ALU (Arithmetic Logical Unit) di dalam CPU tersebut. Output dari CU ini akan mengatur aktivitas dari bagian lainnya dari perangkat CPU tersebut.
Pada awal-awal desain komputer, CU diimplementasikan sebagai ad-hoc logic yang susah untuk didesain. Sekarang, CU diimplementasikan sebagai sebuah microprogram yang disimpan di dalam tempat penyimpanan kontrol (control store). Beberapa word dari microprogram dipilih oleh microsequencer dan bit yang datang dari word-word tersebut akan secara langsung mengontrol bagian-bagian berbeda dari perangkat tersebut, termasuk di antaranya adalah register, ALU, register instruksi, bus dan peralatan input/output di luar chip. Pada komputer modern, setiap subsistem ini telah memiliki kontrolernya masing-masing, dengan CU sebagai pemantaunya (supervisor).
REGISTER
Adalah memori yang kecil pada computer yang bekerja dengan kecepatan sangat tinggi yang digunakan untuk melakukan eksekusi terhadap program-program komputer dengan menyediakan akses yang cepat terhadap nilai-nilai yang umum digunakan. Umumnya nilai-nilai yang umum digunakan adalah nilai yang sedang dieksekusi dalam waktu tertentu.
- Set Register
Prosesor memiliki 16 register 16-bit, meskipun hanya 12 dari mereka adalah tujuan yang benar-benar umum. Empat pertama telah mendedikasikan menggunakan:
• r0 (alias PC) adalah program counter. Anda bisa melompat dengan menentukan r0, dan konstanta yang diambil langsung dari aliran instruksi menggunakan pasca-kenaikan mode pengalamatan r0. PC selalu bahkan.
• r1 (alias SP) adalah stack pointer. Ini digunakan oleh panggilan dan instruksi dorong, dan dengan penanganan interupsi. Hanya ada satu stack pointer; MSP430 tidak memiliki apa pun yang menyerupai mode supervisor. Pointer stack selalu bahkan; Tidak jelas apakah LSB bahkan diimplementasikan.
• r2 (alias SR) adalah register status.
• r3 ini didesain untuk 0. Jika ditetapkan sebagai sumber, nilainya adalah 0. Jika ditetapkan sebagai tujuan, nilai tersebut akan dibuang.
- Control Register
Adalah prosesor yang mengubah atau mengontrol CPU atau perangkat digital lainnya. Tugas dari control register adalah untuk mengontrol setiap alamat yang ada di CPU dan untuk switching mode pengalamatan.
VIRTUAL
MEMORI
Virtual Memory adalah ruang HDD yang menggunakan beberapa bagian sebagai
memori. Ini adalah aplikasi yang digunakan untuk menyimpan data dan instruksi
yang saat ini tidak diperlukan agar proses oleh sistem. Selama proses loading
program, sistem akan menyalin data aplikasi dan instruksi dari HDD ke memori
utama (sistem memori). Oleh karena itu sistem dapat menggunakan sumber daya
seperti CPU untuk memproses dan melaksanakannya. Setelah mendapatkan memori
sistem penuh, sistem akan mulai bergerak beberapa data dan instruksi yang tidak
perlu lagi untuk memproses ke Virtual Memory sampai data dan instruksi mereka
perlu proses lagi. Sehingga sistem dapat memanggil aplikasi berikutnya data dan
instruksi dan menyalinnya ke memori utama agar sistem untuk memproses
beristirahat dan beban program. Ketika data dan instruksi yang ada di Memori
Virtual perlu proses lagi, sistem akan memeriksa terlebih dahulu memori utama
untuk ruang. Jika ada ruang, itu hanya akan menukar mereka ke memori utama.
Jika tidak ada ruang yang tersisa untuk memori utama, sistem akan memeriksa
terlebih dahulu memori utama dan memindahkan setiap data dan instruksi yang
tidak perlu proses ke Memori Virtual.
Kemudian menukar data dan instruksi yang perlu proses oleh sistem dari
Memori Virtual ke memori utama. Setelah terlalu rendah dari ukuran Virtual
Memory atau Memori Virtual ukuran besar (yang berarti ukuran yang berada di
atas dua kali lipat dari sistem memori) bukan ide yang baik. Jika Anda
menetapkan Memori Virtual terlalu rendah, maka OS akan terus mengeluarkan pesan
kesalahan yang menyatakan baik Tak cukup memori atau Virtual terlalu rendah.
Hal ini karena beberapa bagian dari sistem memori digunakan untuk menyimpan OS
Kernel, dan membutuhkan untuk tetap berada dalam memori utama sepanjang waktu.
Oleh karena itu sistem harus memiliki ruang untuk menyimpan proses saat ini
tidak diperlukan data dan instruksi ketika memori utama bisa diisi. Jika Anda
menetapkan ukuran Memori Virtual terlalu besar untuk mendukung aplikasi yang
intensif, juga bukan ide yang baik. Karena akan menciptakan kinerja tertinggal,
dan bahkan ia akan mengambil HDD ruang bebas. Kebutuhan sistem untuk
mentransfer data dan aplikasi instruksi bolak-balik antara Memori Virtual dan
Sistem Memori. Oleh karena itu, itu bukan ide yang baik. Ukuran yang ideal
untuk Virtual Memory adalah ukuran default Virtual Memory, dan tidak boleh
melebihi nilai ukuran triple memori sistem.
CHACHE
MEMORY
Cache memori adalah memori berkapasitas terbatas, berkecepatan tinggi yang
lebih mahal daripada memiri utama. Cache memori ini ada diantara memori utama
dan register pemroses, berfungsi agar pemroses tidak langsung mengacu pada
memori utama agar kinerja dapat ditingkatkan.
Cache memori
ini ada dua macam yaitu :
1. Cache Memori yang terdapat pada internal processor, Cache memori jenis ini
kecepatan aksesnya sangat tinggi, dan harganya sangat mahal. Hal ini bisa
terlihat pada processor yang berharga mahal. semakin tinggi kapasitas cache
memori maka semakin mahal dan semakin cepat processor.
2. Cache memori yang terdapat diluar processor, yaitu berada pada motherboard.
Cache memori jenis ini kecepatan aksesnya sangat tinggi, meskipun tidak secepat
cache memori jenis pertama (yang ada pada internal processor).semakin besar
kapasitasnya maka semakin mahal dan cepat. Hal ini bisa kita lihat pada
motherboard dengan beraneka ragam kapasitas cache memori yaitu 256kb, 512kb,
1Mb, 2Mb dll.
Reference :
http://www.scribd.com/doc/34681874/2-Set-Instruksi
http://endahajah.wordpress.com/2009/03/31/hello-world/
http://id.wikipedia.org/wiki/Set_instruksi
http://gpinkom.wordpress.com/2008/06/03/pengertian-bus-bit-dan-byte/
http://www.scribd.com/doc/34680928/Bab-7-Sistem-Bus-Organisasi-Komputer
Reference :
http://www.scribd.com/doc/34681874/2-Set-Instruksi
http://endahajah.wordpress.com/2009/03/31/hello-world/
http://id.wikipedia.org/wiki/Set_instruksi
http://gpinkom.wordpress.com/2008/06/03/pengertian-bus-bit-dan-byte/
http://www.scribd.com/doc/34680928/Bab-7-Sistem-Bus-Organisasi-Komputer
Tidak ada komentar:
Posting Komentar